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engineering experience with repeated experimental testing.
This is often expensive, motivating computational methodsThe use of gradient-based optimization algorithms in inverse de-

sign is well established as a practical approach to aerodynamic which compute the optimal design directly. These methods
design. A typical procedure uses a simulation scheme to evaluate require defining an objective function and an appropriate
the objective function (from the approximate states) and its gradient, PDE model of the states of the system. A comparison of
then passes this information to an optimization algorithm. Once the

several optimal design methods may be found in [13].simulation scheme (CFD flow solver) has been selected and used
While there are examples of shape optimization prob-to provide approximate function evaluations, there are several pos-

sible approaches to the problem of computing gradients. One popu- lems solved using derivative free optimization algorithms
lar method is to differentiate the simulation scheme and compute (see, e.g., [15]), many popular approaches couple a gradi-
design sensitivities that are then used to obtain gradients. Although ent-based optimization algorithm with function evalua-
this black-box approach has many advantages in shape optimization

tions provided by a proven simulation scheme. One ofproblems, one must compute mesh sensitivities in order to compute
the disadvantages of these approaches is the expense ofthe design sensitivity. In this paper, we present an alternative ap-

proach using the PDE sensitivity equation to develop algorithms computing the gradient. Using finite differences is often
for computing gradients. This approach has the advantage that too costly, even if appropriate step sizes can be found and
mesh sensitivities need not be computed. Moreover, when it is the simulation scheme can take advantage of ‘‘nearby’’
possible to use the CFD scheme for both the forward problem and

solutions (as is the case with iterative solvers for nonlin-the sensitivity equation, then there are computational advantages.
ear equations).An apparent disadvantage of this approach is that it does not always

produce consistent derivatives. However, for a proper combination Two strategies for alleviating the computational expense
of discretization schemes, one can show asymptotic consistency of gradient evaluations are adjoint variables [20] and design
under mesh refinement, which is often sufficient to guarantee con- sensitivities [17]. Adjoint methods are advantageous when
vergence of the optimal design algorithm. In particular, we show

either the problem is self-adjoint or there are a large num-that when asymptotically consistent schemes are combined with a
ber of design parameters. However, when there are rela-trust-region optimization algorithm, the resulting optimal design

method converges. We denote this approach as the sensitivity equa- tively few design parameters, using design sensitivities,
tion method. The sensitivity equation method is presented, conver- quantities which describe the influence of the design pa-
gence results are given, and the approach is illustrated on two rameters on the states of the system, is an attractive alterna-
optimal design problems involving shocks. Q 1997 Academic Press

tive. In addition to efficient gradient computations, they
can be used in some problems to construct an effective
update of the approximate Hessian for quasi-Newton opti-1. INTRODUCTION
mization algorithms, e.g., [10].

A standard approach often used to compute the designOptimal design problems consist of selecting design pa-
rameters for a system in order to optimize a given design sensitivities is based on (implicitly) differentiating the sim-

ulation scheme (for the states) with respect to the designobjective, usually constrained to satisfy a partial differen-
tial equation. In many of these problems, design parame- variables. Using the chain rule to carry out this calculation

results in an efficient numerical scheme for the sensitivities.ters describe the shape of an object. Examples of these
shape optimization problems include drag reduction [24], The efficiency arises from reusing many of the quantities

computed in the simulation scheme. In fact, the ‘‘inver-[25], weight minimization [17], optimal sensor/actuator
placement [6], airfoil design [19–22] and the design of wind sion’’ of the system matrix (i.e., the matrix factorization)

can often be reused.tunnel elements [18].
Traditionally, approximate solutions of these problems A disadvantage of this approach is that for shape optimi-

zation problems, the discretization is parameter depen-are found by ‘‘cut and try’’ methods, combining a designer’s
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dent. Thus, derivatives of the discretization (mesh sensitivi- above, however, we focus on the particular example of
shape optimization of Euler flows in order to illustrate theties) are required for each shape parameter. Depending

on the simulation scheme used for the states, determining method. In Section 2, we describe two design problems.
In Section 3, we present the sensitivity equation methodthe discretization can require the solution of a partial dif-

ferential equation (as is the case for finite difference solu- including the trust-region algorithm and the use of the
sensitivity equation to find the design sensitivities. Further-tions of viscous flow problems [29]). This requires a strat-

egy for computing the mesh sensitivities [23] or for more, we compare various numerical approximations of
the sensitivity equation with approaches based on the dis-computing an approximation to them [27, 28].

Another approach to finding design sensitivities relies cretized equations. Section 4 discusses a number of conver-
gence issues and includes a convergence theorem for theon approximating the partial differential equation, known

as the sensitivity equation. This equation is obtained by sensitivity equation method. In Section 5, we use a one-
dimensional duct design problem to describe the imple-implicitly differentiating the (infinite-dimensional) state

equation with respect to each design parameter. As shown mentation of the sensitivity equation approach. Finally, we
describe the implementation and perform shape optimiza-in [2], using the same numerical scheme to approximate

the sensitivity equation which is used to approximate the tion for a two-dimensional forebody simulator design prob-
lem where the steady-state Euler equations are used tostates leads to an efficient scheme with similar computa-

tional advantages as the design sensitivity approach de- model the state variables.
scribed above. Furthermore, since the discretization is ap-

2. ILLUSTRATIVE EXAMPLESplied directly to the sensitivity equations, no sensitivity of
the mesh is required. The sensitivity equation is always

We present two optimal design problems below whichlinear in the design sensitivity, even if the state equation
are used to illustrate the sensitivity equation method.is nonlinear. Since there is no requirement to use the same
These problems consist of determining shape parametersnumerical scheme, it is possible to gain additional computa-
which produce a solution to the Euler equations thattional savings by using a scheme which takes advantage of
matches a desired flow ‘‘as closely as possible.’’ The firstthe linearity in the sensitivity equations.
problem is motivated by the design of a wind tunnel ele-An apparent disadvantage of this approach is that it
ment in order to produce a desired flow in the test section.does not compute consistent derivatives. In other words,
We study a two-dimensional analogue of this problem. Thethe sensitivity equation approach does not capture the
second problem consists of prescribing the cross-sectionalsensitivity of the truncation errors in the scheme. Thus,
area of a one-dimensional duct to produce a duct flowthere is a concern that providing an optimization algorithm
which matches a desired flow profile. This problem waswith an approximation of the gradient of the infinite-di-
used by Frank and Shubin [13] in their study of optimalmensional objective function instead of the gradient of the
design.approximate objective function would cause the algorithm

to fail. One might expect, however, that if the gradients are
2.1. Forebody Simulator Design Problem

‘‘close enough’’ to the true gradients, then the optimization
algorithm should still converge. We show that this conver- The Arnold Engineering Development Center (AEDC)

operates a free-jet test facility which is used for full-scalegence can be established if one combines compatible simu-
lation and optimization schemes. testing of commercial and military aircraft engines. En-

gines are evaluated for performance and safety under vari-Trust-region optimization algorithms are constructed to
be globally convergent by minimizing a model of the objec- ous free flight conditions. While this facility is large enough

to house engines, it is not large enough to house an entiretive function in a region where the model is ‘‘trusted.’’
This leads to robust algorithms capable of handling inaccu- aircraft forebody. Thus, the effect of the aircraft forebody

on the engine inlet flow profile must be simulated. Oneracies in the model. In fact, convergence results have been
given for these algorithms when the model is based on way of doing this is to replace the actual forebody by a

smaller object, called a forebody simulator (FBS). The useinaccurate gradient information [7, 8]. The results hold
provided the gradients satisfy a given error condition. of the FBS is illustrated in Fig. 1. The FBS design problem

is to specify the shape of this FBS so that it produces anTherefore, it is natural to consider an optimal design
method which couples a trust-region optimization algo- engine inlet flow profile which is as close to some desired

profile as possible [18]. The desired profile can be deter-rithm with gradients computed using the sensitivity equa-
tion approach. We denote this combined sensitivity/trust- mined by performing either a wind tunnel simulation or a

computational simulation of a model configuration resem-region algorithm by the sensitivity equation method (SEM).
In this work, we present and analyze the sensitivity equa- bling a test condition of the aircraft engine.

In order to demonstrate the applicability of the SEM,tion method. The method can be applied to a wide class
of optimal design problems, including those mentioned we consider a two-dimensional analogue of this problem.
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FIG. 1. Forebody simulator design problem.

P 5 (c 2 1) FE 2
1
2

r(u2 1 v2)G , (3)

This problem, depicted in Fig. 2, is to find the shape of
the curve G, which produces an outflow that matches the

where c is the ratio of specific heats (c 5 1.4 for air).
outflow generated by the original (longer) forebody as

Given a forebody simulator shape G, the flow Q(G) is
closely as possible. The flow, Q (consisting of the density

determined by solving the Euler equations (1) in the test
r, the momentum ruî 1 rvĵ and the sum of the internal

cell domain V(G) subject to the boundary conditions (for
and kinetic energy E) is modeled using the steady state

supersonic flow)
Euler equations,

Q 5 Qin at the test cell inflow, (4)­F
­x

1
­G
­y

5 0, (1)
(u, v) · n̂ 5 0 and (5)

where ­

­n
((u, v) · t̂) 5 0 at the walls (no flow penetration), (6)

where n̂ and t̂ are the normal and tangential vectors at
the boundary, respectively. The set of admissible forebody
simulator shapes is

A 5 hG [ C1(a, b) u G(a) 5 Ga ,
(7)

G(b) 5 Gb and G(x) $ Ga , ;x [ (a, b)j.

A statement of the design problem is given below.

Problem 2.1 (Forebody Simulator Design). Let Q̂ be
a desired flow at the outflow (engine inlet),

S 5 h(x, y) u x 5 b, Gb # y # cj. (8)

Define the objective function

J (G) 5 E
S

iQ(G) 2 Q̂i2
2 dS, (9)

where Q(G) represents the solution of (1) with boundary
conditions (4)–(6) in the test cell V(G). The forebody simu-

FIG. 2. 2D forebody simulator design problem. lator design problem is to find G* [ A such that
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J (G*) # J (G) for all G [ A. (10) order artificial dissipation terms are added for stability,
represented by C(2) and C(4), respectively. This scheme is
implemented in the PARC2D code [9]. Several implemen-Closed-form solutions to (1) with (4)–(6) are available
tation issues are discussed briefly below which are referredonly for special domains. Therefore, we consider approxi-
to in later sections. Readers interested in more code detailsmate solutions of (1) and hence the approximation of Prob-
or the actual expressions used for C(2) and C(4) shouldlem 2.1.
consult [9].The discretization is performed by selecting mesh points

The difference scheme produces a system of equationsin the flow domain V(G) where to flow variables will be
for the update of the flow variables, DQ n. Thus, the solu-approximated. It is desirable to select this mesh in such a

tion at the nth iteration, Q n, is determined fromway that the points are more dense in regions where flow
gradients are expected to be ‘‘large’’ (in order to have
more accurate differencing) and more coarse in regions Q n 5 Q n21 1 DQ n21. (15)
where the flow is nearly constant (in order to save computer
time). Other issues, such as selecting points with no sharp The system matrix produced by the approximation above
changes in density and with sufficient resolution to treat is quite large due to differencing in each direction. How-
the boundary conditions, make the mesh generation a sci- ever, this problem is circumvented using an approximate
ence in and of itself (see, e.g., [29]). factorization into a product of two matrices, each corre-

Another constraint on the discretization, to simplify the sponding to differencing in one of the lattice directions.
implementation of a finite difference scheme, is to use a The final system has the form
regular mesh, i.e., a mesh where there exists a bijective
map taking the mesh points to a lattice of points in the

[I 1 Dtdj A n 2 =j(C(2)
j 1 C(4)

j ) Dj JM]
computational space. For example, suppose that M is a
C1 mapping, 3 [I 1 Dtdh Bn 2 =h(C(2)

h 1 C(4)
h ) Dh JM] DQ n

5 2DtdjFn 2 DtdhG n (16)
M : (x, y) R (j, h); (11)

1 Dt =j (C(2)
j 2 C(4)

j Dj =j) Dj (JMQ n)
then derivatives in the physical space are easily approxi-

1 Dt =h (C(2)
h 2 C(4)

h Dh =h) Dh (JMQ n),mated on the lattice using the chain rule. Denoting the
Jacobian of the mapping by JM , the transformed Euler

whereequations become

A n 5
­F
­Q

(Qn) and B n 5
­G
­Q

(Qn). (17)
­F
­j

1
­G
­h

5 0, (12)

where The subscripted terms d, =, and D represent the central,
backward, and forward difference operators, respectively,
in the lattice direction indicated by the subscript. The con-
verged solution is denoted by QN(x, y) ; Qnp (M(x, y)).

We introduce Bezier curves to parameterize the fore-
body simulator. Bezier polynomials possess several niceF 5 UQ 1 PJ 21

M 3
0

­j

­x

­j

­y

U

4 , G 5 VQ 1 PJ 21
M 3

0

­h
­x

­h
­y

V

4 , (13)
properties when used in approximations. The most im-
portant for the examples presented here are the convex
hull and endpoint interpolation properties (see, e.g., Farin
[12]). For this problem, we consider a set of two-parameter,
q 5 (q1, q2), Bezier curves

Q 5 J 21
M Q, U 5

­j

­x
u 1

­j

­y
v, and V 5

­h
­x

u 1
­h
­y

v.

(14) B 5 hG [ C1[0, 1] u G(s) 5 (Gx(s), Gy(s; q)),
(18)

Gy(s; q) $ Ga , s [ [0, 1], q [ R2j,
A standard finite difference scheme developed by Beam

and Warming [1] is used to approximate the transformed
whereequations. The scheme introduces a time variable, t, as a

means of iterating an initial guess for the solution, to a
Gx(s) 5 aB0,3(s) 1 0.6B1,3(s) 1 0.8B2,3(s) 1 bB3,3(s), (19)solution of the steady state equations. Second- and fourth-
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Gy(s; q) 5 GaB0,3(s) 1 q1B1,3(s) 1 q2B2,3(s) 1 GbB3,3(s),
f(u) 5 u 1

H
u

, g(u, A) 5
1
A S ­

­x
AD Scu 2

H
u D ,

(27)(20)

and c 5
c 2 1
c 1 1

,
and

where H and c are flow constants taken to be 1.14 and
Bi,r(x) 5 Sr

iD x i(1 2 x)r2i. (21) 1.4, respectively. The Rankine–Hugoniot condition yields
the speed of sound as us 5 ÏH . Unique solutions of this
BVP are guaranteed for monotone area functions, there-

We also assume a 5 0.5 and b 5 1.0. We can now introduce
fore, cross-sectional areas, A, are restricted to

the approximate forebody simulator design problem.

Problem 2.2 (Approximate Forebody Simulator De-
A 5 HA [ C1(0, 1) u A(0) 5 Ain , A(1) 5 Aout

(28)
sign). Let hQ̂ij g

i51 be desired flow measurements at S. We
assume that the data measurements are given at the quad-
rature points; otherwise interpolation must be used. Define

and
­

­x
A(x) . 0, ;x [ (0,1)Jthe objective function

for fixed inlet and outlet areas of Ain and Aout . We nowJ N
g (G) 5 Og

i51
ci iQN(xi ; G) 2 Q̂ii2

2 , (22)
describe the optimal design problem.

Problem 2.3 (Duct Design). Let û(?) [ L2(0, 1) be awhere QN(xi ; G) represents the approximate solution to
desired transonic flow profile for the duct and define the(1) in the domain V(G) at the quadrature point xi . The
objective function byapproximate forebody simulator design problem is to find

G* [ B such that
J (A) 5 E1

0
[u(x; A) 2 û(x)]2 dx, (29)

J N
g (G*) # J N

g (G) for all G[ B. (23)

where u(?; A) is the solution to (26) corresponding to A.
Let The optimal design problem is to find an A* [ A such that

Q 5 h(q1, q2) [ R2 u G(?; q1, q2) [ Bj; (24) J (A*) # J (A) for all A [ A . (30)

then the problem can be equivalently stated as finding While the BVP has a closed form solution [13], we con-
(q1

* , q2
*) [ Q such that sider approximations of (26) and consequently of Problem

2.3 in order to study the more general case. We begin by
J N

g (q1
p , q2

p) # J N
g (q1, q2) for all (q1, q2) [ Q. (25) discretizing the duct length into N cells (of length h 5

1/N) with centers, xj 5 ( j 2 As)h, j 5 1, ..., N and define
2.2. Duct Design Problem uN

j to be the average velocity in the jth cell, i.e.,

This problem consists of designing the cross-sectional
area of a one-dimensional duct such that, under specified uN

j (A) 5
1
h
Exj1h/2

xj2h/2
u(x; A) dx. (31)

inlet and outlet conditions, it produces a flow which is as
close to a desired transonic flow as possible. The governing

A system of nonlinear equations for uN(A) 5 huN
j (A)jN

j51conservation laws (steady-state continuity, momentum,
can be found by integrating (26) over each cell,and energy equations) can be reduced to a single two-

point boundary value problem (BVP) for the velocity. It
was shown in [13] that the velocity, u, is the solution of f(u(xj 1 h/2; A)) 2 f(u(xj 2 h/2; A))

h
1 g(uN

j (A), A(xj)) 5 0,

­

­x
f(u) 1 g(u, A) 5 0,

(26)
j 5 1, ..., N,

(32)

u(0) 5 uin and u(1) 5 uout , where it was assumed that (1/A) (­/­x) A was nearly con-
stant over each cell. An approximation to uN is found by
replacing the fluxes at the cell edges, f(u(xj 1 h/2)), usingwhere uin and uout are the velocities at the inlet and outlet

of the duct, and A is the cross-sectional area of the duct, the cell center values fj 5 f(uN
j ) and fj11 5 f(uN

j11). Two
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standard first-order ‘‘Godunov-type’’ methods are the En- Note that we can identify any A [ B with the parameter
q [ Q ; [Ain , Aout] which uniquely represents it. Thusquist–Osher scheme
we can equivalently state the problem as to find q* [ Q

such that
fSu Sxj 1

h
2DDP F EO

j11/2

(33)

J N
g (q*) # J N

g (q) for all q [ Q. (38)

3. SENSITIVITY EQUATION METHOD

5 5
fj11 uN

j , uN
j11 # us ;

fj uN
j , uN

j11 $ us ;

f(us) uN
j , us , uN

j11 ;

fj 1 fj11 2 f(us) uN
j11 , us , uN

j ;

3.1. Trust-Region Algorithms

We shall use a trust-region algorithm for the optimiza-
tion loop. The reason for selecting this type of scheme is
its robustness property [7], which will be clear when weand the artificial viscosity scheme
discuss the convergence properties in Section 4. We give
a brief description of a trust-region algorithm below in
order to prepare for the formulation of the sensitivity equa-fSuSxj 1

h
2DDP FAV

j11/2 5
1
2

( fj11 1 fj 2 a(uj11 2 uj)), (34)
tion method.

The quasi-Newton optimization algorithm produces a
where a has been selected as 1 for this study. These approx- sequence of iterates which are obtained by minimizing a
imations were used in [13], but are included above for local quadratic model of the objective function. This model
completeness. is constructed using the evaluation of the objective func-

We turn now to the approximation of the cross-sectional tion, J N
g (qk); its gradient, =J N

g (qk); and a secant approxi-
area A. The space A is replaced by a subset of Bezier mation to its Hessian, Hk , at the current iterate qk . The
quadratic polynomials. The properties of Bezier polynomi- minimization of this model produces the next iterate
als allow us to easily impose both the monotonicity require- qk11 , i.e.,
ment and the matching of inflow and outflow cross-sec-
tional areas. Consider mk(qk11) 5 min

sk

mk(qk 1 sk)
(39)

B 5 hA [ C1(0, 1)uA(x) 5 AinB0,2(x) 1 qB1,2(x)
(35) 5 min

sk

SJ N
g (qk) 1 =J N

g (qk)Tsk 1
1
2

sT
k HkskD.

1 AoutB2,2(x); x [ (0,1), q [ [Ain , Aout]j,

where Bi,r is defined in (21). Thus, B is a one parameter Thus the next step is
set of curves in A. We restrict our optimization problem
to this set B. qk11 5 qk 2 H21

k =J N
g (qk).

Our final step in the approximation of Problem 2.3 is
replacing the integral by a quadrature rule, with the set of For sufficiently close initial guesses of q0 and H0 (and
quadrature weights and points h(ci , xi)j g

i51 . We now state assumptions on the objective function), the iterates con-
the approximate design problem. verge q-superlinearly to the minimum, q* (see, e.g., [11,

p. 206]).Problem 2.4 (Approximate Duct Design). Let hûij g
i51

However, the initial guess may not be in this superlinearrepresent data for a desired transonic flow profile in the
region. Thus globalization strategies are employed to bringduct. We assume that the data and the approximate solu-
the iterates into the superlinear region. It is desirable totion are given at the quadrature points, otherwise interpo-
choose strategies which reduce to the quasi-Newton algo-lation must be used. Define the objective function
rithm close to the minimum. One such strategy is a trust-
region algorithm. In this algorithm, a quantity d, known

J N
g (A) 5 Og

i51
ci[uN

i (A) 2 ûi]2, (36) as the trust-region radius, is used to measure the region
in which the local quadratic model, mk, is ‘‘trusted’’ as an
approximation of the actual objective function, J N

g . Thus,
where uN(A) is an approximate solution to (26) with the the next iterate, qk11 , is now found by minimizing the
cross-sectional area A. The approximate design problem model in this region, i.e.,
is to find an A* [ B such that

mk(qk11) 5 min
iski#dk

mk(qk 1 sk), (40)
J N

g (A*) # J N
g (A) for all A [ B. (37)
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where dk is the trust-region radius at the kth iteration, and lems where the approximation of the PDE is computation-
ally expensive and is overly complex in shape optimizationi?i indicates the Euclidean norm.

A heuristic for changing the trust-region radius needs problems due to the necessity of computing a new mesh.
One way of alleviating the computational burden is byto be developed which increases dk when the model predic-

tion is good and decreases dk when the model prediction using design sensitivities, quantities which describe the in-
fluence of the design variables on the flow variables. Foris poor. One such strategy uses the ratio
example, we can directly compute the gradient by differ-
entiating (36) as

rk 5
J N

g (qk) 2 J N
g (qk11)

mk(qk) 2 mk(qk11)
, (41)

­

­q
J N

g (q) 5 2 Oq
i51

ci[uN
i (q) 2 ûi]

­

­q
uN

i (q). (43)which is the ratio of the computed reduction to the reduc-
tion predicted by the model. If this ratio is small (or nega-
tive), then the model did a poor job of predicting J N

g and The quantity (­/­q)uN 5 h(­/­q) uN
i j N

i51 is the design sensi-
the trust-region is decreased. On the other hand, if the tivity for the discretized flow uN.
ratio is near 1, then the model did very well at predicting There are several ways to compute this sensitivity. As
J N

g and the trust-region radius is increased. above, one might use finite differences, yielding the ap-
We present the resulting trust-region algorithm below. proximation
ALGORITHM 3.1 (Trust-Region). Select an initial guess

q0 [ Q, an initial trust-region radius d0 , and constants ­

­q
uN(xi ; q) P

uN(xi ; q 1 Dq) 2 uN(xi ; q)
Dq

. (44)0 , h1 , h2 , 1 and 0 , c1 , 1 , c2 . Compute J N
g (q0),

=J N
g (q0) and select or initialize H0 .

Do k 5 0, 1, . . . , until ‘‘convergence’’ When the discretization is parameter dependent, it is easier
to compute this approximation using1. Determine the approximate solution sk to Eq. (40).

We chose the optimally constrained hook-step
method [11, 14] to do this. ­

­q
uN(xi ; q) P

uN(xi 1 (­/­q)M(xi)Dq; q 1 Dq) 2 uN(xi; q)
Dq2. If rk , h1 , then set dk11 [ (0, c1dk) and qk11 5 qk ,

J N
g (qk11) 5 J N

g (qk), =J N
g (qk11) 5 =J N

g (qk), and
2

­

­x
uN(xi; q)

­

­q
M(xi)Hk11 5 Hk .

(45)

3. If h1 , rk , h2 , then set dk11 [ (0, dk] and qk11 5
qk 1 sk . Compute J N

g (qk11), =J N
g (qk11) and the up- in order to avoid interpolating back to the unperturbed

date Hk11 . mesh. This approach has the advantage that it may be
4. If h2 , rk , then set dk11 [ [dk , c2dk] and qk11 5 possible to select a step size Dq using error estimates for uN.

qk 1 sk . Compute J N
g (qk11), =J N

g (qk11) and the up- However, it is as computationally expensive as computing
date Hk11 . finite differences on J N

g .
A more efficient approach can be obtained by differenti-Continue

ating the simulation scheme used to approximate the flow
(the discrete sensitivity approach). For example, in the3.2. Design Sensitivities
FBS design problem, the simulation scheme (16) could be

In order to apply a gradient-based optimization algo- differentiated with respect to q, leading to a numerical
rithm, such as the trust-region algorithm described above, scheme for terms like (­/­q)uN. Since the chain rule must
we need to consider methods for computing the gradient be used to carry this out, the resulting scheme for the
of J N

g . In this discussion, we consider finding the gradient sensitivities contains terms similar to those found in the
of J N

g (or a suitable approximation) with respect to the simulation scheme. Thus, the sensitivities can be computed
single design parameter q. This discussion can be easily efficiently along with the flow. A disadvantage of this ap-
extended to find the gradient of J N

g with respect to multiple proach is that when the discretization is parameter depen-
design parameters. A straightforward approach is to use dent, as in shape optimization problems, then derivatives
a finite difference approximation, e.g., of the discretization (terms like (­/­q)M) need to be con-

sidered, see, e.g., [23].
An alternative approach is based on differentiating the­

­q
J N

g (q) P
J N

g (q 1 Dq) 2 J N
g (q)

Dq
. (42)

original flow equation with respect to the design parameter
and then approximating the resulting sensitivity equation.
The result is ((­/­q)u)N,M, where the superscript N refersUnfortunately, this approach may not be practical for prob-
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to the approximation of the flow equation and the super- implement than current methods. In the sections below,
we discuss convergence issues and describe the implemen-script M refers to the approximation of the sensitivity equa-

tion. Since this approach interchanges the order of differ- tation of this method.
entiation and approximation, no mesh sensitivities are
required. Furthermore, it has been shown [2] that applying 4. CONVERGENCE ISSUES
the same approximation scheme to the sensitivity equation

Algorithm 3.1 is based on a quadratic model of theleads to computational advantages similar to those pro-
objective function J N

g and expects the gradient (­/­q) J N
gvided by the discrete approach described above. Moreover,

in order to formulate the next step. Whether or not thatadditional computational savings could be obtained by
gradient is produced depends on the numerical schemesapplying a scheme which takes advantage of the linearity
used for both the states and the sensitivities. This motivatesof the sensitivity equation. A potential disadvantage of
our definition below.this approach, however, is that in general (­/­q)uN ?

((­/­q)u)N,M, even if the same approximation scheme is DEFINITION 4.1. A numerical scheme is said to produce
used for both the flow and sensitivity equations. consistent derivatives with respect to approximations N (for

However, if we consider the gradient of the infinite- the states) and M (for the sensitivities) if
dimensional objective function,

­

­q
J N

g (?) 5 S ­

­q
JDN,M

g
(?). (49)­

­q
J (q) 5 2 E1

0
[u(x; A) 2 û(x)]

­

­q
u(x; A), (46)

This is exactly the case for the discrete sensitivity approach,then using the sensitivity equation approach provides an
since one actually defines (computes) ((­/­q) J )N,M

g (?) toapproximation of this gradient, i.e.,
be (­/­q) J N

g (?).

In some cases, it may be more advantageous to compute­

­q
J (q) P S ­

­q
JDN,M

g
(q)

(47)
gradients which are not consistent. However, it is possible
that these schemes produce gradients which are ‘‘close
enough’’ to ensure a convergent algorithm. We introduce

5 2 Og
i51

ci(uN
i (q) 2 ûi) S ­

­q
uDN,M

i
(q). the definition of asymptotically consistent derivatives be-

low to facilitate our investigation of convergence later in
this section.Thus, we have reason to expect that this approach could

produce feasible gradients for the optimization scheme. DEFINITION 4.2. A numerical scheme is said to produce
These two sensitivity approaches are described in detail asymptotically consistent derivatives with respect to approx-
in later sections using concrete examples. imations N (for the states) and M (for the sensitivities) if

3.3. Sensitivity Equation Method U ­

­q
J N

g (q) 2 S ­

­q
JDN,M

g
(q)UR 0, ;q [ Q0 (50)

The sensitivity equation method couples a trust-region
optimization algorithm with gradient evaluations provided
by approximating the sensitivity equation. Thus we con- is satisfied as the approximations N and M are refined.
sider applying Algorithm 3.1 with the quadratic model

We now consider the convergence of the sensitivity
equation method. To begin with, we assume that the fol-ck(qk11) 5 min

iski#dk

ck(qk 1 sk)

(48)
lowing hypotheses hold.

(H1) For a given q0 in the design space Q, let Q0 be an
5 min

iski#dk

SJ N
g (qk) 1 gT

k sk 1
1
2

sT
k HkskD. open convex subset containing the level set of J N

g at q0 , i.e.,

L0 5 hq [ Qu J N
g (q) # J N

g (q0)j , Q0 # Q. (51)
Note that we replace the quadratic model mk by ck to
emphasize the fact that =J N

g is approximated by gk , com- (H2) J N
g is bounded below.

puted as ((­/­q) J )N,M
g (qk).

(H3) J N
g is Frechet differentiable on Q0.The intent is to use the robustness of the trust-region

optimization algorithm to compensate for the nonconsis- (H4) The Frechet derivative of J N
g , denoted by

=J N
g , is Lipschitz continuous on Q0 with Lipschitz constanttent gradients. The result is an optimal design method

which is often more efficient and considerably easier to L, i.e.,
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i=J N
g (q1) 2 =J N

g (q2)i # Liq1 2 q2i, ;q1, q2 [ Q0 . (52) in which case

(H5) The approximate gradient, gk is asymptotically con- ck(qk) 2 ck(qk11) 5
kgk , dkl

kHkdk , dkl
kgk , dkl

sistent to =J N
g (qk).

(H6) There exists a constant c1 [ (0, 1] such that
2

1
2

kgk , dkl2

kHkdk , dkl2 kHkdk , dkl

c1igki iski # k2gk , skl # igki iski , ;k 5 1, 2, .... (53)
5

1
2

kgk , dkl2

kHkdk , dkl
$

1
2

c2
1

igki2

c3

(H7) There exist constants c2 , c3 [ (0, y) such that
using hypotheses (H6) and (H7), or

2c2 kd, dl # kHkd, dl # c3 kd, dl, ;k 5 1, 2, .... (54) a* 5 dk ,

The following discussion parallels the proof given in [7] in which case
which treats the use of trust-region algorithms with inexact
gradient and function values. This discussion makes use

dk , 2
kgk , dkl

kHkdk , dklof the fact that we seek the minimum of J N
g and have

asymptotically consistent derivatives.

impliesLEMMA 4.1. Under assumptions (H6) and (H7), Algo-
rithm 3.1 produces iterates which satisfy

ck(qk) 2 ck(qk11) 5 2dkkgk , dkl 2
1
2

d2
kkHkdk , dkl

ck(qk) 2 ck(qk11) $
1
2

c1igki min Hdk ,
c1igki

c3
J . (55)

$ 2dk kgk , dkl 1
1
2

dk kgk , dkl $
1
2

c1dkigki

Proof. Note that since ck(qk) 5 J N
g (qk), by hypothesis (H6).

Case 2. Assume kHkdk , dkl , 0; then a* 5 dk . Therefore

ck(qk) 2 ck(qk11) 5 2 kgk , skl 2
1
2

kHksk , skl. (56)

ck(qk) 2 ck(qk11) 5 2dkkgk , dkl 2
1
2

d2
kkHkdk , dkl

Now, let
$ 2dk kgk , dkl $ c1dkigki $

1
2

c1dkigki.

sk 5 iski
sk

iski
; a*dk; LEMMA 4.2. Assume (H7) holds; then

lim inf
kRy

igki . 0 and lim
kRy

dk 5 0 (58)
then a* solves

imply
min

0#a#dk

akgk , dkl 1
1
2

a2 kHkdk , dkl. (57)

lim
kRy

2
ksk , gkl
iski igki

5 1. (59)

We can break this up into two cases, when kHkdk , dkl $ 0
and when kHkdk , dkl , 0. Proof. It was shown [11] that, if iski 5 dk , then the

solution to (48) is given by s(ek), where
Case 1. Assume kHkdk , dkl $ 0; then either

s(e) 5 2 (Hk 1 eI)21 gk

a* 5 2
kgk , dkl

kHkdk , dkl
,

and ek is the unique real number that satisfies is(ek)i 5
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dk . Therefore, if dk R 0, then ek R y (since Hk is bounded, J N
g (q) 2 J N

g (q 1 s) 5 2E1

0
k=J N

g (q), sl dl 2E1

0
k=J N

g (q 1 ls)
by (H7)). Thus sk R 2e21

k gk .

2 =J N
g (q), sl dlLEMMA 4.3. Let J N

g satisfy (H3), (H4), and (H7); then
the iterates satisfy

$
a

2L
i=J N

g (q)i2 2
1
2

Lisi2

[ck(qk) 2 ck(qk11)] 2 [ J N
g (qk) 2 J N

g (qk11)]

(60) $
a

4L
i=J N

g (q)i2S1 2
a
2D#

1
2

(c2 1 L) iski2 2 kgk 2 =J N
g (qk), skl.

.
a

4LS1 2
a
2D [8L( J N

g (q0) 2 c)].Proof. Using the Cauchy–Schwartz inequality and
(H3), we obtain

This is positive for a [ (0, 2), and thus J N
g (q) . J N

g (q 1
J N

g (qk11) 2 J N
g (qk) 5 E1

0
k=J N

g (qk 1 lsk), skl dl s), which implies q 1 s [ L0 . In addition

5 k=J N
g (qk), skl 1 E1

0
k=J N

g (qk 1 lsk) J N
g (q) 2 J N

g (q 1 s) . J N
g (q0) 2 c

2 =J N
g (qk), skl dl

holds, but this is a contradiction since q and q 1 s are
in L0 .# k=J N

g (qk), skl 1 E1

0
i=J N

g (qk 1 lsk)

THEOREM 4.1. Assume J N
g satisfies (H2), (H3), and (H4).

2 =J N
g (qk)i iski dl.

Furthermore, assume the approximate gradient satisfies con-
ditions (H5) and (H6) and that the update is constructed

By the Lipschitz hypothesis (H4), so that (H7) holds. Then, for a sufficiently fine discretization,
the sensitivity equation method produces a sequence of iter-

J N
g (qk11) 2 J N

g (qk) # k=J N
g (qk), skl ates such that

1 E1

0
Lilski iski dl

lim inf
kRy

igki 5 0. (61)

5 k=J N
g (qk), skl 1

1
2

Liski2.
Proof. Assume to the contrary that lim infkRy igki . 0

and define uk such that
Thus, using (H7),

[ck(qk) 2 ck(qk11)] 2 [ J N
g (qk) 2 J N

g (qk11)] cos(uk) 5
k2gk , skl
igki iski

# 2kgk , skl 2
1
2

kHksk , skl 1 k=J N
g (qk), skl 1

1
2

Liski2

and wk [ Q such that

# 2kgk 2 =J N
g (qk), skl 1

1
2

(c2 1 L)iski2,

wk 5 5
0 sin(uk) 5 0

1
sin(uk) S sk

iski
1 cos(uk)

gk

igkiD sin(uk) ? 0
.

which completes the proof.

LEMMA 4.4. Assume J N
g satisfies (H2), (H3), and (H4),

and assume (H7) holds; then =J N
g is bounded on L0 .

Then kgk , wkl 5 0 by construction, and
Proof. Let c be a constant such that J N

g (q) $ c, ;q [
Q0 (as guaranteed by (H2)). Assume to the contrary that kgk 2 =J N

g (qk), wkl 5 2k=J N
g (qk), wkl.

there exists a point q [ L0 such that

If sin(uk) ? 0, then iwki 5 1 andi=J N
g (q)i2 . 8L( J N

g (q0) 2 c).

Define s 5 2(a/2L) =J N
g (q), where we chose a small sk 5 iski S2cos(uk)

gk

igki
1 sin(uk)wkD . (62)

enough so that q 1 s [ Q0 . Then



376 BORGGAARD AND BURNS

Let K denote the set of successful iterations, then lim
kRy

1 2 rk , 1 2 h2 .

rk 5
J N

g (qk) 2 J N
g (qk11)

ck(qk) 2 ck(qk11)
. h1 Hence, rk . h2 which implies dk11 . dk , a contradiction.

The convergence of the sensitivity equation method is
for each k [ K. Lemma 4.1 implies possible due to the robustness of the trust-region algorithm

(Algorithm 3.1). Secant methods have also been shown to
be robust [16] and it may be possible to use this fact to

J N
g (qk) 2 J N

g (qk11) $
h1c1

2
igki min Hdk ,

c1igki
c3

J . study the convergence rate of this method. This will be
investigated in future work.

Since J N
g is bounded below, by (H2), the above condition

implies limkRy,k[Kdk 5 0. Therefore, as dk is decreased in 5. DUCT DESIGN PROBLEM
unsuccessful iterations, limkRydk 5 0. We now have the
conditions for Lemma 4.2, and In this section, we use the duct design problem to illus-

trate the implementation of the sensitivity equation
method. To begin with, we will introduce the discrete ap-

lim
kRy

k2gk, skl
igki iski

5 1. proach for finding design sensitivities in order to compare
it with the sensitivity equation approach.

Thus limkRy cos(uk) 5 1 and limkRy sin(uk) 5 0.
5.1. Discrete SensitivitiesConsider the expression

To obtain an algorithm for the sensitivities (­/­q)uN

(q) 5 h(­/­q)uN
j (q)jN

j51 , the system of nonlinear equations1 2 rk 5
ck(qk) 2 ck(qk11) 2 ( J N

g (qk) 2 J N
g (qk11))

ck(qk) 2 ck(qk11)
;

(32) is differentiated, yielding

by Lemma 4.3 and the definition of ck , we get
F j11/2 2 F j21/2

h
1 g SuN

j ,
­

­q
uN

j , A(xj),
­

­q
A(xj)D5 0, (63)

1 2 rk #
As(c2 1 L)iski2 2 kgk 2 =J N

g (qk), skl
k2gk, skl 2 AskHk sk , skl

.

where F j11/2 is determined by the scheme used to compute
the flow. If the Enquist–Osher scheme was used,Using hypothesis (H7),

1 2 rk ,
As(c2 1 L)iski2 2 kgk 2 =J N

g (qk), skl
k2gk, skl

.

F EO
j11/2 5 5

f j11 uN
j , uN

j11 # us ;

f j uN
j , uN

j11 $ us ;

0 uN
j , us , uN

j11 ;

f j 1 f j11 uN
j11 , us , uN

j ;

(64)Substituting expression (62) and using iski , dk , we get

1 2 rk #

As(c2 1 L)dk 2 (cos(uk)/igki) kgk 2 =J N
g (qk), gkl

2 kgk 2 =J N
g (qk), wkl sin(uk)

igki cos(uk)
.

or if the artificial viscosity scheme was used,

By Lemma 4.4 and the Cauchy–Schwartz inequality,
k=J N

g (qk), wkl is bounded and we consider the limit as F AV
j11/2 5

1
2 Sf j11 1 f j 2 a S ­

­q
uN

j11 2
­

­q
uN

j DD , (65)
k R y,

where f j 5 f (uN
jj , (­/­q)uN

j ),lim
kRy

1 2 rk 5 lim
kRy

kgk 2 J N
g (qk), gkl

igki2 #
igk 2 J N

g (qk)i
igki

.

Since lim infkRy igki . 0 and gk is asymptotically consistent, f Su,
­

­q
uD5 S1 2

H
u2D ­

­q
u (66)

we can select a sufficiently fine discretization such that
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and and obtain

g Su,
­

­q
u, A,

­

­q
AD5

­

­q S1
A

­

­x
AD Scu 2

H
u D

(67) F AV
j11/2 5

1
2 Sf j11 1 f j 2 a SS ­

­q
uDN

j11
2 S ­

­q
uDN

j
DD (72)

1 S1
A

­

­x
AD Sc 1

H
u2D ­

­q
u.

for the artificial viscosity scheme. It is obvious that the
approximation of the sensitivity equations depends on theThis differentiated scheme can now be used to compute
approximation of the flow equations. As described earlier,(­/­q)uN.
we use the notation ((­/­q)u)N,M to represent using scheme

5.2. Sensitivity Equation N to approximate the flow equation and scheme M to
approximate the sensitivity equation.We now present the implementation for the sensitivity

equation approach. We begin by differentiating the flow
5.3. Convergence Resultsequation (26) with respect to the parameter q. Thus

The convergence result provided in Theorem 4.1 can be­

­x
f Su,

­

­q
uD1 g Su,

­

­q
u, A,

­

­q
AD5 0 (68) proved for the case when the artificial viscosity scheme is

used to appproximate the flow and the Enquist–Osher
scheme is used to approximate the sensitivities in Algo-­

­q
u(0) 5 0 and

­

­q
u(1) 5 0 (69)

rithm 3.1. For this problem, we assume (the (H1) in Theo-
rem 4.1) thatis the sensitivity equation for this problem. Note that the

sensitivity equation is a linear equation with variable coef-
Q 5 [Ain , Aout], Q0 5 (Ain , Aout),ficients (determined by u). There has been little analysis

of numerical schemes to approximate equations of this
type. However, for this two-point boundary value problem, and
the same numerical schemes (Enquist–Osher and artificial
viscosity) provide convergent algorithms. As in the approx-

L0 5 hq [ Q u J NAVg (q) # J NAVg (q0)j.imation of (26), we consider ((­/­q)u)N
j to be the average

sensitivity in the j th cell. A system of nonlinear equations
for ((­/­q)u)N(q) 5 h((­/­q)u)N

j (q)jN
j51 can be found by The objective function J NAVg given above is obviously

integrating (68) over each cell, bounded below (by zero if all of the quadrature weights
are nonnegative) satisfying (H2). The hypothesis (H3), the
differentiability of

f (u(xj 1 h/2), (­/­q)u(xj 1 h/2))

2 f (u(xj 2 h/2), (­/­q)u(xj 2 h/2))
h

(70) J NAVg (q) 5 Og
i51

ci (uNAV (xi ; q) 2 û(xi))2

1 g SuN
j , S ­

­q
uDN

j
, A(xj),

­

­q
A(xj)D5 0,

on Q0 and hypothesis (H4), the Lipschitz continuity of the
j 5 1, ..., N, where we assume A and (­/­q)A are nearly derivative, follow from the following.
constant over each cell. As before, the terms f (u(xj 1
h/2), (­/­q)u(xj 1 h/2)) are replaced by the cell center LEMMA 5.1. The approximate solution uNAV is differenti-
values f j and f j11 . Using the Enquist–Osher scheme, we able and the derivative is Lipschitz continuous on Q0 .
obtain

Proof. The approximate solution, uNAV is the root of
the nonlinear equations

W(uNAV, q) 5 [F AV
j11/2(uNAV, q) 2 F AV

j21/2(uNAV, q)]
(73)

F EO
j11/2 5 5

f j11 uN
j , uN

j11 # us ;

f j uN
j , uN

j11 $ us ;

f Sus , S ­

­q
uD

s
D uN

j , us , uN
j11 ;

f j 1 f j11 1 f Sus , S ­

­q
uD

s
D uN

j11 , us , uN
j ;

1 gj (uNAV, q) 5 0,

where F AV
j11/2 and g are Cy functions of their arguments

(for uNAV . 0). Then by the implicit function theorem,
the map(71)
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q R uNAV (q)

is Lipschitz continuously differentiable.

We point out that the differentiability of the approxi-
mate objective functional is strongly dependent on the
discretization scheme used in the approximation. For ex-
ample, the objective functional associated with a Godunov
approximation of the flow is not differentiable, a result of
matching a parameter dependent discontinuity on a dis-
crete set of points [4]. Finding feasible optimization strate-
gies for this problem has been the focus of recent work,
see, e.g., [4, 22, 26]. However, for the purpose of this discus-
sion, the artificial viscosity scheme provides a smooth
enough approximate objective function.

The hypothesis (H5) is guaranteed (for some discretiza-
tion level) by the asymptotic consistency shown below.

FIG. 3. Design sensitivity approximations using Enquist–OsherTHEOREM 5.1. For the one-dimensional Euler equa-
scheme.

tions, the derivative ((­/­q) J )NAV,MEOg , where the flow is
approximated using the artificial viscosity approximation
and the sensitivities are approximated using the Enquist–
Osher scheme, is asymptotically consistent to (­/­q) J NAVg . stating that the angle between the step sk and the steepest

descent direction 2gk are uniformly bounded away fromProof. Consider the norm used in the definition of
908. In practice, we never actually calculate a c1 .asymptotic consistency:

Finally, (H7) can be enforced by the secant update strat-
egy. Therefore, we have shown that these approximation
schemes satisfy the conditions of Theorem 4.1. NumericalU ­

­q
J NAVg 2 S ­

­q
J DNAV,MEO

g
U

computations using these sensitivity schemes are pro-
vided below.

# U ­

­q
J NAVg 2 S ­

­q
J DNAV,MAV

g
U

5.4. Numerical Results

The sensitivity of the velocity with respect to the Bezier
1 US ­

­q
J DNAV,MAV

g
2 S ­

­q
J DNAV,MEx

g
U parameter, q, is presented using the numerical schemes

described above. For this computation, the cross-sectional
area corresponds to an element of B (see (35)) with q 5

1 US ­

­q
J DNAV,MEx

g
2 S ­

­q
J DNAV,MEO

g
U. 1.37125. The interval [0, 1] is divided into 45 cells. In Fig.

3, the sensitivity solution using the Enquist–Osher scheme
to compute both the flow uNEO and the sensitivityThe first term on the right-hand side vanishes since using
((­/­q)u)NEO,MEO is compared with the closed form sensitiv-the artificial viscosity scheme for approximating both the
ity solution. In addition, the sensitivities computed via fi-flow and sensitivity equations leads to consistent deriva-
nite differences of Enquist–Osher solutions using a finitetives. The last two terms go to zero as the approximations
difference step size of Dq 5 (1 3 1026) q are also provided.NAV , MAV , and MEO are refined, since the artificial viscos-
Excellent agreement is seen for both of these methods.ity and Enquist–Osher schemes converge when used to
The only discrepancy is in the cell to the left of the shock,approximate the sensitivity equation, ((­/­q)u)NAV,MEx is
where numerical dissipation appears in the flow solution.the exact solution to the sensitivity equation given uNAV.

The corresponding design sensitivities which are com-
puted using only the artificial viscosity schemes are shownThe hypothesis (H6) can be enforced by the optimization

algorithm by rejecting steps which violate this condition in Fig. 4. As above, the agreement is excellent except where
dissipation errors appear in the flow approximations. Inand shrinking the trust-region radius. This procedure even-

tually creates a step which satisfies (H6), since the limit of this case, these errors appear over more cells near the
shock.this procedure would produce a step in the steepest descent

direction. As noted above, the existence of the constant Note that the computations of these sensitivities were
performed efficiently, relative to the cost of a flow approxi-c1 is a theoretical result. This is a relatively weak condition
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TABLE I

A Comparison of Gradients at the Optimum for
Various Mesh Sizes

N q
*

J NAV
g (=q J )NAV,MEO

q

15 1.3398 0.011707 20.056521
45 1.3437 0.004800 20.001566

135 1.3525 0.002485 20.000012
225 1.3543 0.002476 0.007602
315 1.3553 0.002645 0.026731
405 1.3554 0.002816 0.001584

6. FOREBODY SIMULATOR DESIGN PROBLEM

We now describe the implementation of the sensitivity
equation method for the forebody simulator design prob-

FIG. 4. Design sensitivity approximations using artificial viscosity lem described in Section 2. As in the duct design problem,
scheme. we begin by presenting the equations which comprise the

discrete sensitivity scheme in order to compare and con-
trast the two methods. Unlike the duct problem, we have
no theoretical convergence results for the FBS design prob-

mation. The flow approximation requires solving a system lem. However, the numerical experiments below show that
of nonlinear equations. The sensitivity approximation, on the SEM still converges.
the other hand, only requires solving a linear system since

6.1. Discrete Sensitivitiesthe sensitivity appears only linearly in the definition of f
and g. Moreover, if the Newton method is used to solve

Differentiating the numerical scheme (16) with respect
the nonlinear system, then the linear system is already

to a design parameter, represented by q, leads to the
available in factored form. Therefore, the sensitivities can

scheme
be computed using less computational time than required
for one Newton step. Computational efficiencies such as [I 1 DtdjAn 2 =j(C(2)

j 1 C(4)
j )Dj JM]

this can be missed if the flow algorithm is simply differen-
tiated.

3 [I 1 DtdhBn 2 =h(C(2)
h 1 C(4)

h )Dh JM] D
­

­q
Q n

Note that as long as ((­/­q)u)s is bounded,

5 2FDtdj

­

­q
An 2 =j S ­

­q
C(2)

j 1
­

­q
C(4)

j D Dj JM

f Sus , S ­

­q
uD

s
D5 S1 2

H
u2

s
D S ­

­q
uD

s
5 0,

2 =j(C(2)
j 1 C(4)

j ) Dj

­

­q
JMG

since H 5 u2
s . Thus, one observes that the numeri- 3 [I 1 DtdhB n 2 =h(C(2)

h 1 C(4)
h ) Dh JM] DQ n

cal algorithms to compute either (­/­q)uNEO or
2 [I 1 Dtdj An 2 =j(C(2)

j 1 C(4)
j ) Dj JM]((­/­q)u)NEO,MEO are equivalent. This leads to the fact that

using the Enquist–Osher scheme to approximate both the
flow and the sensitivity equations produces consistent gra- 3 FDtdh

­

­q
B n 2 =h S ­

­q
C(2)

h 1
­

­q
C(4)

h D Dh JM (74)
dients. In addition, it is easily seen that using the artificial
viscosity scheme to approximate both equations also pro-

2 =h(C(2)
h 1 C(4)

h ) Dh
­

­q
JMG DQ nduces consistent gradients. However, if the artificial viscos-

ity scheme is used to approximate the flow and the En-
quist–Osher scheme is used to approximate the sensitivity

2 Dtdj

­

­q
F n 2 Dtdh

­

­q
G n

equations, the gradients are not consistent but asymptoti-
cally consistent.

Numerical results for this asymptotically consistent case 1 Dt=j S ­

­q
C(2)

j 2
­

­q
C(4)

j Dj =jD Dj(JM Q n)
are provided in Table I.
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1 Dt=j(C(2)
j 2 C(4)

j Dj=j) Dj

­

­q
(JM Q n)

1 Dt=h S ­

­q
C(2)

h 2
­

­q
C(4)

h Dh =hD Dh(JM Q n)
Qq 53

­

­q
r

­

­q
(ru)

­

­q
(rv)

­

­q
E

4 ,

1 Dt=h(C(2)
h 2 C(4)

h Dh=h) Dh
­

­q
(JM Q n).

The equations representing the boundary conditions are
also differentiated. Note that the above sensitivity scheme
requires derivatives of the mapping, (­/­q) M (denoted as and where
mesh sensitivities) and the dissipation terms, (­/­q)C(2)

and (­/­q)C(4). Evaluation of (­/­q) M is given by differ-
entiating the scheme which determines M; see, e.g., [23]. ­

­q
u 5 F ­

­q
(ru) 2

­

­q
r

ru
r
G@r andOther methods for approximating (­/­q) M have also been

investigated; see, e.g., [28]. We see from (74) that terms
containing these expressions represent a significant portion ­

­q
v 5 F ­

­q
(rv) 2

­

­q
r

rv
r
G@r,of the computational effort, aside from the fact that

(­/­q) M, (­/­q)C(2), and (­/­q)C(4) themselves need to
be determined.

since r ? 0.
We are now free to apply any appropriate scheme to6.2. Sensitivity Equation

solve (75). In particular, it is possible to use a method
The sensitivity equation approach to computing design which takes advantage of the linearity of the sensitivity

sensitivities is presented below. To begin with, we differen- equation. However, in this work, the same scheme used
tiate the Euler equations and associated boundary condi- to solve the flow equations is used to approximate the
tions with respect to the design parameter q, which leads to sensitivity equations, which leads to an efficient computa-

tional scheme as in the discrete approach [2]. This scheme
is described below.

This equation may now be transformed to generalized
­Fq

­x
1

­Gq

­y
5 0, (75)

coordinates, so that the finite differencing can be done
more easily. It makes sense to use the same transformation
(which is equivalent to using the same mesh) that was usedwhere
in the solution of the Euler equations. Thus the resulting
system is

­Fq

­j
1

­Gq

­h
5 0, (76)

Fq 5
­

­q
uQ 1 uQq 13

0

­

­q
P

0

­

­q
Pu 1 P

­

­q
u
4,

where

Fq 5 UQq 1 UqQ 1
­

­q
PJ21

M 3
0

­j

­x

­j

­y

U

41 PJ21
M 3

0

0

0

Uq

4 ,Gq 5
­

­q
vQ 1 vQq 13

0

0

­

­q
P

­

­q
Pv 1 P

­

­q
v
4 ,
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simulator is described by a two-parameter Bezier curve
(18)–(20). Extensions to other forebody descriptions will
be obvious. The appropriate conditions are obtained by
differentiating the corresponding boundary conditions for

Gq 5 VQq 1 VqQ 1
­

­q
PJ21

M 3
0

­h
­x

­h
­y

V

41 PJ21
M 3

0

0

0

Vq

4 , the Euler equations. For example, at the inlet, the flow Qin

is prescribed and will not vary as the forebody parameters
q 5 (q1, q2) are changed; thus

Qq 5 0

where
at the test cell inflow. The walls are treated in a similar
fashion. However, the boundary condition at the forebody

U 5 =j ? (u, v) and Uq 5 =j ? S ­

­q
u,

­

­q
vD, simulator surface requires more attention. This is because

the points where the condition is evaluated are parame-
ter dependent.and

We study the treatment of condition (5) in detail. The
normal vector to the forebody surface is

V 5 =h ? (u, v) and Vq 5 =h ? S ­

­q
u,

­

­q
vD.

n̂ 5 S2
­

­s
Gy(s; q),

­

­s
Gx(s)D@

(78)It can be shown that

!S ­

­s
Gx(s)D2

1 S ­

­s
Gy(s; q)D2

.
A 5

­F
­Q

5
­Fq

­Qq

and B 5
­G
­Q

5
­Gq

­Qq

,

Thus, the boundary condition (5) can be written asso that the discretization has the same factored form as
the Euler equations; thus

2u (Gx(s), Gy(s; q); q)
­

­s
Gy(s; q)

(79)
[I 1 DtdjAn 2 =j(C(2)

j 1 C(4)
j )Dj JM]

1 v (Gx(s), Gy(s; q); q)
­

­s
Gx(s) 5 0.3 [I 1 DtdhBn 2 =h(C(2)

h 1 C(4)
h )Dh JM] DS ­

­q
QDn

5 2 Dtdj(F q)n 2 Dtdh(G q)n (77)
The corresponding sensitivity equation boundary condi-
tion for the first parameter, q1, can be obtained via differen-1 Dt=j(C(2)

j 2 C(4)
j Dj=j)Dj( JM Q)n

tiation, i.e.,
1 Dt=h(C(2)

h 2 C(4)
h Dh=h)Dh( JM Q)n.

Since the left-hand-side matrices are the same, a right- 2
­

­q1 u(Gx(s), Gy(s; q); q)
­

­s
Gy(s; q)

hand-side vector needs to be formed for each design sensi-
tivity. In addition, the boundary condition type is the same

1
­

­q1 v (Gx(s), Gy(s; q); q)
­

­s
Gx(s)for both the Euler and sensitivity equations. The boundary

conditions are determined using implicit differentiation.
Note that this scheme is similar to the discrete sensitivity 5

­

­y
u(Gx(s), Gy(s; q); q)

­

­q1 Gy(s; q)
­

­s
Gy(s; q)

approach. However, since the approximation is applied
after the differentiation, there are no mesh sensitivity or

1 u(Gx(s), Gy(s; q); q)
­2

­s­q1 Gy(s; q)dissipation sensitivity terms. The other obvious difference
is that the boundary condition on the parameter-dependent
boundary is different.

2
­

­y
v(Gx(s), Gy(s; q); q)

­

­q1 Gy(s; q)
­

­s
Gx(s).

6.3. Boundary Conditions

The boundary conditions for the sensitivity equation This is simply a nonhomogeneous version of condition
(5), namely,(75) are provided below for the case where the forebody
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S ­

­q1 u,
­

­q1 vD ? n̂ 5
­

­y
u

­

­q1 Gy
­

­s
Gy 1 u

­2

­s­q1 Gy

(80)

2
­

­y
v

­

­q1 Gy
­

­s
Gx .

Using the same techniques, the boundary conditions corre-
sponding to (6) are

­

­n S ­

­q1 utD5
­2

­x­y
ut

­

­q9
Gy

­

­s
Gy

1
­

­x
ut

­2

­s­q1 Gy 2
­2

­y2 ut
­

­q1 Gy
­

­s
Gx ,

­

­n S ­

­q1 vtD5
­2

­x­y
vt

­

­q9
Gy

­

­s
Gy

FIG. 5. Comparison of sensitivities at outflow: x-component of mo-
1

­

­x
vt

­2

­s­q1 Gy 2
­2

­y2 vt
­

­q1 Gy
­

­s
Gx . mentum.

The analogous boundary conditions for q2 are obvious.
5. The corresponding plots for the energy sensitivity are
provided in Fig. 6. Observe that the step size of 0.000016.4. Numerical Results
produces noisy sensitivity values close to the forebody (pre-

The sensitivity equation approach, which computes de- sumably due to round-off errors). A larger step size of 0.01
sign sensitivities for the two-dimensional Euler equation, gives the best results (when compared to the sensitivity
is illustrated below. In this implementation, a right-hand- equation approach) near the shock location. The best qual-
side vector for each design sensitivity is formed along with itative behavior appears when the step size is 0.001. Figures
the corresponding vector for the flow approximations. The 5 and 6 demonstrate the difficulty of obtaining a satisfac-
updates for the flow and the sensitivity variables are ob- tory step size at all resolution levels in the flow domain.
tained simultaneously, exploiting the fact that the left- A model forebody simulator design problem is discussed
hand-side matrices are the same. below. To begin with, we seek the optimum value of the

The design sensitivities with respect to the first Bezier inlet Mach number and two Bezier parameters ((q1, q2),
parameter q1 were computed for a forebody described by
the curve

Ĝ 5 (x̂(s), ŷ(s)), s [ [0, 1],

where

x̂(s) 5 0.0B0,3(s) 1 0.1B1,3(s) 1 0.55B2,3(s) 1 1.0B3,3(s),

ŷ(s) 5 GaB0,3(s) 1 q1B1,3(s) 1 q2B2,3(s) 1 GbB3,3(s),

q1 5 0.1, q2 5 0.15, Ga 5 0, and Gb 5 0.2. This curve is
twice as long in the x-direction as the admissible forebody
simulators given in B (see (18)). Under a uniform inlet
flow profile described by the inlet Mach number, Ma 5
2.0, the approximate flow variables and sensitivities are
computed on a 43 3 49 mesh. The sensitivity of the x-
component of momentum with respect to the Bezier pa-
rameter q1, computed using the sensitivity equation ap-
proach and the finite difference approach (for four differ-

FIG. 6. Comparison of sensitivities at outflow: energy.ent step sizes) are plotted along the outflow plane in Fig.
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TABLE II

Shortened Forebody Optimization

Iteration Ma q1 q2 Cost functional Gradient

0 2.00000 0.10000 0.15000 3.2339 27.1283
1 2.00108 0.14608 0.17177 1.6000 11.6285
2 2.01054 0.26846 0.14152 0.3332 3.7955
3 2.00897 0.30765 0.13671 0.2334 0.4621
4 2.01027 0.30139 0.14007 0.2306 0.5963
5 2.01307 0.29367 0.14737 0.2289 0.6861
6 2.01670 0.28891 0.15564 0.2271 0.5009
7 2.01900 0.29011 0.15921 0.2249 0.1513
8 2.01940 0.29278 0.15821 0.2237 0.0576
9 2.01936 0.29420 0.15669 0.2232 0.0571

10 2.01952 0.29439 0.15604 0.2230 0.0275
11 2.01994 0.29417 0.15603 0.2229 0.0173
12 2.02006 0.29415 0.15609 0.2229 0.0153

FIG. 8. Comparison of optimal solution with data.

describing a shortened forebody simulator in the admissi-
ble set B) which minimize the approximate cost functional The sensitivity equation method was applied to the FBS
J N

g (given in Eq. (25)). The flow data Q̂ to be matched is design problem with initial values of the parameters:
given by the flow QN corresponding to the forebody shape Ma 5 2.0, q1 5 0.10, and q2 5 0.15. These parameters
Ĝ described above. We point out that the artificial dissipa- correspond to those used to generate Q̂ (even though that
tion in the flow solver produces a ‘‘smearing’’ effect on forebody is longer). We present the iteration history in
the flow variables. Therefore, based on the results for the Table II. Observe that there is a drastic reduction in the
duct design problem, we expect a sufficiently smooth ap- approximate cost functional in the first three iterations.
proximate cost functional. Furthermore, the comparison The iteration history for the x-component of momentum
of the sensitivities in Figs. 5 and 6 leads us to believe that is given in Fig. 7. Note that the front end of the forebody
the sensitivity equation approach may produce asymptoti- simulator becomes more blunt during the first two itera-
cally consistent derivatives. tions in which a stagnation region is set up in front of the

FBS. This has the effect of moving the shock forward,
which comes close to the shock location created by the
long forebody. The remaining iterations are used to ‘‘fine
tune’’ the solution near the FBS. The comparison of the
optimal forebody simulator to the flow generated by the
long forebody is displayed in Fig. 8. Notice that the shock
location is the same in both flows.

6.5. Comments

While no rigorous proof of asymptotically consistent
gradients has been shown for Euler equations, numerical
evidence in [3] suggests that the gradients may indeed
be asymptotically consistent. Similar numerical evidence
exists for finite element approximations of the Navier–
Stokes equations [5].
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